Test:Translation (geometry): Difference between revisions

Redaktion (talk | contribs)
No edit summary
Tag: 2017 source edit
Redaktion (talk | contribs)
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:Test:Traslazione OK.svg|alt=translation graphic|thumb|<span style="color: rgb(32, 33, 34)">A translation moves every point of a figure or a space by the same amount in a given direction.</span>]]
{{Short description|Planar movement within a Euclidean space without rotation}}
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.<ref>Zazkis, R., Liljedahl, P., & Gadowsky, K. Conceptions of function translation: obstacles, intuitions, and rerouting. Journal of Mathematical Behavior, 22, 437-450. Retrieved April 29, 2014, from www.elsevier.com/locate/jmath</ref>
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.<ref>Zazkis, R., Liljedahl, P., & Gadowsky, K. Conceptions of function translation: obstacles, intuitions, and rerouting. Journal of Mathematical Behavior, 22, 437-450. Retrieved April 29, 2014, from www.elsevier.com/locate/jmath</ref>
==As a function==
{{see also|Displacement (geometry)}}


== As a function ==
== As a function ==
{{Messagebox|boxtype=note|icon=|Note text=This is a translation.|bgcolor=}}[[File:Test:Traslazione OK.svg|alt=translation graphic|thumb|<span style="color: rgb(32, 33, 34)">A translation moves every point of a figure or a space by the same amount in a given direction.</span>]]
See also: Displacement (geometry)
See also: Displacement (geometry)


<nowiki>If {\displaystyle \mathbf {v} }{\displaystyle \mathbf {v} } is a fixed vector, known as the translation vector, and {\displaystyle \mathbf {p} }\mathbf {p}  is the initial position of some object, then the translation function {\displaystyle T_{\mathbf {v} }}{\displaystyle T_{\mathbf {v} }} will work as {\displaystyle T_{\mathbf {v} }(\mathbf {p} )=\mathbf {p} +\mathbf {v} }{\displaystyle T_{\mathbf {v} }(\mathbf {p} )=\mathbf {p} +\mathbf {v} }.</nowiki>
If <math>\mathbf{v} </math> is a fixed vector, known as the ''translation vector'', and <math>\mathbf{p}</math> is the initial position of some object, then the translation function <math>T_{\mathbf{v}} </math> will work as <math> T_{\mathbf{v}}(\mathbf{p})=\mathbf{p}+\mathbf{v}</math>.
 


<nowiki>If {\displaystyle T} T is a translation, then the image of a subset {\displaystyle A}A under the function {\displaystyle T} T is the translate of {\displaystyle A}A by {\displaystyle T}T. The translate of {\displaystyle A}A by {\displaystyle T_{\mathbf {v} }}{\displaystyle T_{\mathbf {v} }} is often written {\displaystyle A+\mathbf {v} }{\displaystyle A+\mathbf {v} }.</nowiki>
If <math> T</math> is a translation, then the image of a subset <math> A </math> under the function <math> T</math> is the '''translate''' of <math> A </math> by <math> T </math>. The translate of <math>A </math> by <math>T_{\mathbf{v}} </math> is often written <math>A+\mathbf{v} </math>.


=== Horizontal and vertical translations ===
=== Horizontal and vertical translations ===
In geometry, a vertical translation (also known as vertical shift) is a translation of a geometric object in a direction parallel to the vertical axis of the Cartesian coordinate system.
In geometry, a vertical translation (also known as vertical shift) is a translation of a geometric object in a direction parallel to the vertical axis of the Cartesian coordinate system.
== Drawio ==
<bs:drawio filename="Translation (geometry)-50289677" />
== Attachments ==
<attachments>
* [[Media:Rasperry_pi.pdf]]
</attachments>


==See also==
==See also==
* [[Advection]]
* [[Advection]]
* [[Parallel transport]]
* [[Parallel transport]]
* [[Rotation matrix]]
* [[Scaling (geometry)]]
* [[Transformation matrix]]
* [[Translational symmetry]]


==External links==
==External links==
{{Commons category|Translation (geometry)}}
 
* [http://www.cut-the-knot.org/Curriculum/Geometry/Translation.shtml Translation Transform] at [[cut-the-knot]]
* [http://www.cut-the-knot.org/Curriculum/Geometry/Translation.shtml Translation Transform]
* [http://www.mathsisfun.com/geometry/translation.html Geometric Translation (Interactive Animation)] at Math Is Fun
* [http://www.mathsisfun.com/geometry/translation.html Geometric Translation (Interactive Animation)] at Math Is Fun
* [http://demonstrations.wolfram.com/Understanding2DTranslation/ Understanding 2D Translation] and [http://demonstrations.wolfram.com/Understanding3DTranslation/ Understanding 3D Translation] by Roger Germundsson, [[The Wolfram Demonstrations Project]].
* [http://demonstrations.wolfram.com/Understanding2DTranslation/ Understanding 2D Translation] and [http://demonstrations.wolfram.com/Understanding3DTranslation/ Understanding 3D Translation] by Roger Germundsson, The Wolfram Dmonstrations Project.




==References==
==References==
{{reflist}}
{{DEFAULTSORT:Translation (Geometry)}}
{{DEFAULTSORT:Translation (Geometry)}}


[[Category:Euclidean symmetries]]
[[Category:Euclidean symmetries]]

Latest revision as of 11:21, 16 September 2022

In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.[1]

As a function

Note:This is a translation.
translation graphic
A translation moves every point of a figure or a space by the same amount in a given direction.

See also: Displacement (geometry)

If is a fixed vector, known as the translation vector, and is the initial position of some object, then the translation function will work as .

If is a translation, then the image of a subset under the function is the translate of by . The translate of by is often written .

Horizontal and vertical translations

In geometry, a vertical translation (also known as vertical shift) is a translation of a geometric object in a direction parallel to the vertical axis of the Cartesian coordinate system.

Drawio

Translation (geometry)-50289677

Attachments

See also

External links


References

  1. Zazkis, R., Liljedahl, P., & Gadowsky, K. Conceptions of function translation: obstacles, intuitions, and rerouting. Journal of Mathematical Behavior, 22, 437-450. Retrieved April 29, 2014, from www.elsevier.com/locate/jmath