No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.<ref>Zazkis, R., Liljedahl, P., & Gadowsky, K. Conceptions of function translation: obstacles, intuitions, and rerouting. Journal of Mathematical Behavior, 22, 437-450. Retrieved April 29, 2014, from www.elsevier.com/locate/jmath</ref> | In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.<ref>Zazkis, R., Liljedahl, P., & Gadowsky, K. Conceptions of function translation: obstacles, intuitions, and rerouting. Journal of Mathematical Behavior, 22, 437-450. Retrieved April 29, 2014, from www.elsevier.com/locate/jmath</ref> | ||
== As a function == | == As a function == | ||
{{Messagebox|boxtype=note|icon=|Note text=This is a translation.|bgcolor=}}[[File:Test:Traslazione OK.svg|alt=translation graphic|thumb|<span style="color: rgb(32, 33, 34)">A translation moves every point of a figure or a space by the same amount in a given direction.</span>]] | |||
See also: Displacement (geometry) | See also: Displacement (geometry) | ||
< | If <math>\mathbf{v} </math> is a fixed vector, known as the ''translation vector'', and <math>\mathbf{p}</math> is the initial position of some object, then the translation function <math>T_{\mathbf{v}} </math> will work as <math> T_{\mathbf{v}}(\mathbf{p})=\mathbf{p}+\mathbf{v}</math>. | ||
If <math> T</math> is a translation, then the image of a subset <math> A </math> under the function <math> T</math> is the '''translate''' of <math> A </math> by <math> T </math>. The translate of <math>A </math> by <math>T_{\mathbf{v}} </math> is often written <math>A+\mathbf{v} </math>. | |||
< | |||
=== Horizontal and vertical translations === | === Horizontal and vertical translations === | ||
Line 17: | Line 14: | ||
== Drawio == | == Drawio == | ||
<bs:drawio filename="Translation (geometry)-50289677" /> | <bs:drawio filename="Translation (geometry)-50289677" /> | ||
== Attachments == | |||
<attachments> | |||
* [[Media:Rasperry_pi.pdf]] | |||
</attachments> | |||
==See also== | ==See also== | ||
* [[Advection]] | * [[Advection]] | ||
* [[Parallel transport]] | * [[Parallel transport]] | ||
==External links== | ==External links== |
Latest revision as of 11:21, 16 September 2022
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.[1]
As a function
See also: Displacement (geometry)
If is a fixed vector, known as the translation vector, and is the initial position of some object, then the translation function will work as .
If is a translation, then the image of a subset under the function is the translate of by Failed to parse (Conversion error. Server ("cli") reported: "array ( 'nohash' => array ( ), 'success' => true, '2069d235e97876cd085dcb676e9ec1fb' => (object) array( 'speakText' => 'upper A', 'mml' => '<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="upper A"><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mi data-semantic-type="identifier" data-semantic-role="latinletter" data-semantic-font="italic" data-semantic-annotation="clearspeak:simple" data-semantic-id="0">A</mi></mstyle></mrow><annotation encoding="application/x-tex">{\\displaystyle A}</annotation></semantics></math>', 'svg' => '<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.743ex" height="2.176ex" style="vertical-align: -0.338ex;" viewBox="0 -791.3 750.5 936.9" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" aria-labelledby="MathJax-SVG-1-Title"><title id="MathJax-SVG-1-Title">upper A</title><defs aria-hidden="true"><path stroke-width="1" id="E1-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)" aria-hidden="true"> <use xlink:href="#E1-MJMATHI-41" x="0" y="0"></use></g></svg>', 'width' => '1.743ex', 'height' => '2.176ex', 'style' => 'vertical-align: -0.338ex;', 'streeJson' => (object) array( 'stree' => (object) array( 'type' => 'identifier', 'role' => 'latinletter', 'font' => 'italic', 'annotation' => 'clearspeak:simple', 'id' => '0', '$t' => 'A', ), ), 'streeXml' => '<stree><identifier role="latinletter" font="italic" annotation="clearspeak:simple" id="0">A</identifier></stree>', 'success' => true, 'log' => 'success', 'mathoidStyle' => 'vertical-align: -0.338ex; width:1.743ex; height:2.176ex;', 'sanetex' => '{\\displaystyle A}', 'speech' => 'upper A', ), )"): {\displaystyle T } . The translate of Failed to parse (Conversion error. Server ("cli") reported: "array ( 'nohash' => array ( ), 'success' => true, '2069d235e97876cd085dcb676e9ec1fb' => (object) array( 'speakText' => 'upper A', 'mml' => '<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="upper A"><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mi data-semantic-type="identifier" data-semantic-role="latinletter" data-semantic-font="italic" data-semantic-annotation="clearspeak:simple" data-semantic-id="0">A</mi></mstyle></mrow><annotation encoding="application/x-tex">{\\displaystyle A}</annotation></semantics></math>', 'svg' => '<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.743ex" height="2.176ex" style="vertical-align: -0.338ex;" viewBox="0 -791.3 750.5 936.9" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" aria-labelledby="MathJax-SVG-1-Title"><title id="MathJax-SVG-1-Title">upper A</title><defs aria-hidden="true"><path stroke-width="1" id="E1-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)" aria-hidden="true"> <use xlink:href="#E1-MJMATHI-41" x="0" y="0"></use></g></svg>', 'width' => '1.743ex', 'height' => '2.176ex', 'style' => 'vertical-align: -0.338ex;', 'streeJson' => (object) array( 'stree' => (object) array( 'type' => 'identifier', 'role' => 'latinletter', 'font' => 'italic', 'annotation' => 'clearspeak:simple', 'id' => '0', '$t' => 'A', ), ), 'streeXml' => '<stree><identifier role="latinletter" font="italic" annotation="clearspeak:simple" id="0">A</identifier></stree>', 'success' => true, 'log' => 'success', 'mathoidStyle' => 'vertical-align: -0.338ex; width:1.743ex; height:2.176ex;', 'sanetex' => '{\\displaystyle A}', 'speech' => 'upper A', ), )"): {\displaystyle A } by is often written Failed to parse (Conversion error. Server ("cli") reported: "array ( 'nohash' => array ( ), 'success' => true, '2069d235e97876cd085dcb676e9ec1fb' => (object) array( 'speakText' => 'upper A', 'mml' => '<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="upper A"><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mi data-semantic-type="identifier" data-semantic-role="latinletter" data-semantic-font="italic" data-semantic-annotation="clearspeak:simple" data-semantic-id="0">A</mi></mstyle></mrow><annotation encoding="application/x-tex">{\\displaystyle A}</annotation></semantics></math>', 'svg' => '<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.743ex" height="2.176ex" style="vertical-align: -0.338ex;" viewBox="0 -791.3 750.5 936.9" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" aria-labelledby="MathJax-SVG-1-Title"><title id="MathJax-SVG-1-Title">upper A</title><defs aria-hidden="true"><path stroke-width="1" id="E1-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)" aria-hidden="true"> <use xlink:href="#E1-MJMATHI-41" x="0" y="0"></use></g></svg>', 'width' => '1.743ex', 'height' => '2.176ex', 'style' => 'vertical-align: -0.338ex;', 'streeJson' => (object) array( 'stree' => (object) array( 'type' => 'identifier', 'role' => 'latinletter', 'font' => 'italic', 'annotation' => 'clearspeak:simple', 'id' => '0', '$t' => 'A', ), ), 'streeXml' => '<stree><identifier role="latinletter" font="italic" annotation="clearspeak:simple" id="0">A</identifier></stree>', 'success' => true, 'log' => 'success', 'mathoidStyle' => 'vertical-align: -0.338ex; width:1.743ex; height:2.176ex;', 'sanetex' => '{\\displaystyle A}', 'speech' => 'upper A', ), )"): {\displaystyle A+\mathbf{v} } .
Horizontal and vertical translations
In geometry, a vertical translation (also known as vertical shift) is a translation of a geometric object in a direction parallel to the vertical axis of the Cartesian coordinate system.
Drawio
Attachments
See also
External links
- Translation Transform
- Geometric Translation (Interactive Animation) at Math Is Fun
- Understanding 2D Translation and Understanding 3D Translation by Roger Germundsson, The Wolfram Dmonstrations Project.
References
- ↑ Zazkis, R., Liljedahl, P., & Gadowsky, K. Conceptions of function translation: obstacles, intuitions, and rerouting. Journal of Mathematical Behavior, 22, 437-450. Retrieved April 29, 2014, from www.elsevier.com/locate/jmath