No edit summary Tag: 2017 source edit |
No edit summary Tag: 2017 source edit |
||
Line 1: | Line 1: | ||
[[File:Test:Traslazione OK.svg|alt=translation graphic|thumb|<span style="color: rgb(32, 33, 34)">A translation moves every point of a figure or a space by the same amount in a given direction.</span>]] | [[File:Test:Traslazione OK.svg|alt=translation graphic|thumb|<span style="color: rgb(32, 33, 34)">A translation moves every point of a figure or a space by the same amount in a given direction.</span>]] | ||
{{Short description|Planar movement within a Euclidean space without rotation}} | {{Short description|Planar movement within a Euclidean space without rotation}} | ||
In | |||
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry. | |||
==As a function== | ==As a function== | ||
{{see also|Displacement (geometry)}} | {{see also|Displacement (geometry)}} | ||
== As a function == | |||
See also: Displacement (geometry) | |||
<nowiki>If {\displaystyle \mathbf {v} }{\displaystyle \mathbf {v} } is a fixed vector, known as the translation vector, and {\displaystyle \mathbf {p} }\mathbf {p} is the initial position of some object, then the translation function {\displaystyle T_{\mathbf {v} }}{\displaystyle T_{\mathbf {v} }} will work as {\displaystyle T_{\mathbf {v} }(\mathbf {p} )=\mathbf {p} +\mathbf {v} }{\displaystyle T_{\mathbf {v} }(\mathbf {p} )=\mathbf {p} +\mathbf {v} }.</nowiki> | |||
<nowiki>If {\displaystyle T} T is a translation, then the image of a subset {\displaystyle A}A under the function {\displaystyle T} T is the translate of {\displaystyle A}A by {\displaystyle T}T. The translate of {\displaystyle A}A by {\displaystyle T_{\mathbf {v} }}{\displaystyle T_{\mathbf {v} }} is often written {\displaystyle A+\mathbf {v} }{\displaystyle A+\mathbf {v} }.</nowiki> | |||
=== Horizontal and vertical translations === | |||
In geometry, a vertical translation (also known as vertical shift) is a translation of a geometric object in a direction parallel to the vertical axis of the Cartesian coordinate system. | |||
==See also== | |||
* [[Advection]] | |||
* [[Parallel transport]] | |||
* [[Rotation matrix]] | |||
* [[Scaling (geometry)]] | |||
* [[Transformation matrix]] | |||
* [[Translational symmetry]] | |||
==External links== | |||
{{Commons category|Translation (geometry)}} | |||
* [http://www.cut-the-knot.org/Curriculum/Geometry/Translation.shtml Translation Transform] at [[cut-the-knot]] | |||
* [http://www.mathsisfun.com/geometry/translation.html Geometric Translation (Interactive Animation)] at Math Is Fun | |||
* [http://demonstrations.wolfram.com/Understanding2DTranslation/ Understanding 2D Translation] and [http://demonstrations.wolfram.com/Understanding3DTranslation/ Understanding 3D Translation] by Roger Germundsson, [[The Wolfram Demonstrations Project]]. |
Revision as of 09:00, 14 September 2022
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.
As a function
As a function
See also: Displacement (geometry)
If {\displaystyle \mathbf {v} }{\displaystyle \mathbf {v} } is a fixed vector, known as the translation vector, and {\displaystyle \mathbf {p} }\mathbf {p} is the initial position of some object, then the translation function {\displaystyle T_{\mathbf {v} }}{\displaystyle T_{\mathbf {v} }} will work as {\displaystyle T_{\mathbf {v} }(\mathbf {p} )=\mathbf {p} +\mathbf {v} }{\displaystyle T_{\mathbf {v} }(\mathbf {p} )=\mathbf {p} +\mathbf {v} }.
If {\displaystyle T} T is a translation, then the image of a subset {\displaystyle A}A under the function {\displaystyle T} T is the translate of {\displaystyle A}A by {\displaystyle T}T. The translate of {\displaystyle A}A by {\displaystyle T_{\mathbf {v} }}{\displaystyle T_{\mathbf {v} }} is often written {\displaystyle A+\mathbf {v} }{\displaystyle A+\mathbf {v} }.
Horizontal and vertical translations
In geometry, a vertical translation (also known as vertical shift) is a translation of a geometric object in a direction parallel to the vertical axis of the Cartesian coordinate system.
See also
- Advection
- Parallel transport
- Rotation matrix
- Scaling (geometry)
- Transformation matrix
- Translational symmetry
External links
- Translation Transform at cut-the-knot
- Geometric Translation (Interactive Animation) at Math Is Fun
- Understanding 2D Translation and Understanding 3D Translation by Roger Germundsson, The Wolfram Demonstrations Project.